Quantity of Airborne Microorganisms in Public Transport of Moscow in Winter Period

  • Vladimir V. Tikhonov Lomonosov Moscow State University
  • Olga V. Nikolaeva Lomonosov Moscow State University
  • Polina A. Pilgun Moscow State Institute of International Relations
Keywords: microbiological quality of air, airborne bacteria, airborne fungi, public transport, underground railway, bus, urban dust

Abstract

This article analyzes airborne microorganisms in Moscow public transport and identifies factors affecting their quantitative and group composition. The sedimentation method based on gravitational settling of air-suspended particles on an agar medium was applied. Microorganisms were distinguished: 1) saprotrophic bacteria (B25); 2) potentially pathogenic bacteria (B37) 3) mycelial fungi (MF). Air sampling was carried out on 4 metro lines and 4 bus routes inside buses and trains and on platforms and bus stops. The number of microorganisms in the air of buses (2463 ± 1041 CFU m-3) was twice that in the air of trains (1230 ± 581 CFU m-3). The outdoor air at bus stops (10328 ± 5704 CFU m-3) and on subway platforms (3882 ± 1859 CFU m-3) had a significantly higher content of microorganisms compared to the indoor air. Inside vehicles B25 was found in the largest numbers, there were smaller numbers of B37 and MF had the smallest numbers. The quantity of microorganisms inside transport complied with the Russian subway regulations; but on platforms and at bus stops it was significantly higher. The levels of air pollution based on EU regulations were identified (bacteria/fungi): medium/low — inside; high/low — on platforms; high/highat bus stops. The dominant factor affecting the number of microorganisms inside transport is the number of microorganisms in the ambient air of the urban environment. Significant correlations with air temperature, the duration of the route and the number of people in the vehicle were not detected.
This article will be useful for specialists in urban studies, as it reflects the connections between the organization of urban spaces and the number of microorganisms in the air. Such measures as open soils and ground fixing with grass cover, the protection of lawns from the unauthorized parking of vehicles and foot traffic, and the minimization of inefficient engineering activities in the city will help reduce the level of dust and the microbiological pollution of urban air.

Downloads

Download data is not yet available.

Author Biographies

Vladimir V. Tikhonov, Lomonosov Moscow State University

Candidate of Biological Sciences, Junior Researcher, The Faculty of Soil Science, Lomonosov Moscow State University; 1 bldg. 12 Leninskiye Gory, Moscow, 119991, Russian Federation, tel.: +7 495 939 48 14

Olga V. Nikolaeva, Lomonosov Moscow State University

Candidate of Biological Sciences, Senior Researcher, The Faculty of Soil Science, Lomonosov Moscow State University; 1 bldg. 12 Leninskiye Gory, Moscow, 119991, Russian Federation, tel.: +7 (926) 588-33-98

Polina A. Pilgun, Moscow State Institute of International Relations

Student of School of Applied Economics and Commerce, MGIMO University; 76 Prospect Vernadskogo, Moscow, 119454, Russian Federation.

References

Богомолова Е.В. и др. (2012) Микроскопические грибы в воздушной среде Санкт-Петербурга / М.А. Бондарцева (ред.). СПб.: Химиздат.

Звягинцев Д.Г. (1987) Почва и микроорганизмы. М.: Изд-во Моск. ун-та.

Иванова А.Е., Марфенина О.Е., Данилогорская А.А. (2012) Культивируемые микроскопические грибы в воздухе ряда станций московского метрополитена и местах наружного воздухозабора // Микология и фитопатология. Т. 46. No 1. С. 33–40.

ГН 2.2.6.3538-18. Предельно допустимые концентрации (ПДК) микроорганизмов-продуцентов, бактериальных препаратов и их компонентов в воздухе рабочей зоны.

ГОСТ Р 52539-2006 Чистота воздуха в лечебных учреждениях. Общие требования — действующий.

Дневник погоды г. Москвы. Режим доступа: [http://www.meteo-tv.ru/](http://www.meteo-tv.ru/) (дата обращения: 13.06.2019).

Дубровская Т.А. (1996) Гигиенические основы оптимизации воздушной среды станций метрополитена: автореф. дисс. ... канд. мед. наук: спец. 14.00.07 «Гигиена» / Т.А. Дубровская. Москва.

Марфенина О.Е., Фомичева Г.М. (2007) Потенциально патогенные мицелиальные грибы в среде обитания человека. Современные тенденции // Микология сегодня / Ю.Т. Дьяков, Ю.В. Сергеев (ред.). Т. 1. М.: Национальная академия микологии. С. 235–266.

Микология сегодня (2007) / Ю.Т. Дьяков, Ю.В. Сергеев (ред.). Т. 1. М.: Национальная академия микологии.

МУК 4.2.734-99. Микробиологический мониторинг производственной среды.

Николаева Л.А. (2013) Гигиеническая оценка микробного загрязнения воздуха помещений: учеб.-метод. пособие / ГБОУ ВПО ИГМУ Минздрава России. Иркутск: ИГМУ.

Кича Д.И., Дрожжина Н.А., Фомина А.В. (2009) Общая гигиена. Руководство к лабораторным занятиям: учеб. пособие. ГЭОТАР-Медиа.

Омелянский В.Л. (1940) Практическое руководство по микробиологии / Б.Л. Исаченко (общ. ред.). Изд. 2-е, перераб. и доп. М.; Л.: Изд-во АН СССР.

Официальный сайт Мэра Москвы. Режим доступа: [https://www.mos.ru/news/item/24621073/](https://www.mos.ru/news/item/24621073/) (дата обращения: 07.09.2018).

СанПиН 2.1.3.2630-10. Санитарно-эпидемиологические требования к организациям, осуществляющим медицинскую деятельность.

СП 2.5.1337-03. Санитарные правила эксплуатации метрополитенов.

Aluko O., Noll K. (2006) Deposition and Suspension of Large, Airborne Particles // Aerosol Science and Technology. Vol. 40 (7). P. 503–513.

Bogomolova E., Kirtsideli I. (2009) Airborne Fungi in Four Stations of the St. Petersburg Underground Railway System // International Biodeterioration & Biodegradation. Vol. 63. P. 156–160.

Bowers R.M. et al. (2011) Sources of Bacteria in Outdoor Air Across Cities in the Midwestern United States // Appl. Environ. Microbiol. Vol. 77. P. 6350–6356.

Commission of the European Communities (CEC) (1993) Indoor Air Quality and Its impact on Man. Report No. 12. Biological Particles in Indoor Environment. Luxemburg.

Douwes J. et al. (2003) Bioaerosol Health Effects and Exposure Assessment: Progress and Prospects // Ann Occup Hyg. Vol. 47 (3). P. 187–200.

Fujiyoshi S., Tanaka D. Maruyama F. (2017) Transmission of Airborne Bacteria Across Built Environments and Its Measurement Standards: A Review // Front Microbiol. Vol. 8. Article 2336.

Garrett M.H. et al. (1997) Airborne Fungal Spores in 80 Homes in the Latrobe Valley, Australia: Level, Seasonality and Indoor-outdoor Relationship // Aerobiologia. Vol. 13. P. 121–126.

Janhall S. (2015) Review on Urban Vegetation and Particle Air Pollution — Deposition and Dispersion // Atmos. Environ. Vol. 105. P. 130–137.

Lee T. et al. (2006) Relationship Between Indoor and Outdoor Bioaerosols Collected with a Button Inhalable Aerosol Sampler in Urban Homes // Indoor Air. Vol. 16 (1). P. 37–47.

Leung D.Y.C. (2015) Outdoor-indoor Air Pollution in Urban Environment: Challenges and Opportunity // Front. Environ. Sci. Vol. 2. Article 69.

Liu H. et al. (2018) Effect of Air Pollution on the Total Bacteria and Pathogenic Bacteria in Different Sizes of Particulate Matter // Environ. Pollut. Vol. 233. P. 483–493.

Luksamijarulkul P. et al. (2004) Microbial Air Quality in Mass Transport Buses and Work-related Illness Among Bus Drivers of Bangkok Mass Transit Authority // J Med Assoc Thai. Vol. 87 (6). P. 697–703.

Man W.H., de Steenhuijsen Piters W.A., Bogaert D. (2017) The Microbiota of the Respiratory Tract: Gatekeeper to Respiratory Health // Nat Rev Microbiol. Vol. 15 (5). P. 259–270.

Napoli С., Marcotrigiano V., Montagna M. (2012) Air Sampling Procedures to Evaluate Microbial Contamination: A Comparison Between Active and Passive Methods in Operating Theatres // BMC Public Health. Vol. 12 (594). P. 1–6.

Pasquarella C., Pitzurra O., Savino A. (2000) The Index of Microbial Air Contamination // Journal of Hospital Infection. Vol. 46. P. 241–256.

Rao C.Y., Burge H.A., Chang J.C.S. (1996) Review of Quantitative Standards and Guidelines for Fungi in Indoor Air // Journal of the Air & Waste Management Association. Vol. 46. P. 899–908.

Robertson C.E. et al. (2013) Culture-independent Analysis of Aerosol Microbiology in a Metropolitan Subway System // Appl. Environ. Microbiol. Vol. 79. No. 11. P. 3485–3493.

Spirn A. (1986) Air Quality at Street Level: Strategies for Urban Design. Prepared for: Boston Redevelopment Authority.

Xu B., Hao J. (2017) Air Quality Inside Subway Metro Indoor Environment Worldwide: A Review // Environment International. Vol. 107. P. 33–46.

Published
2020-03-03
How to Cite
TikhonovV. V., NikolaevaO. V., & PilgunP. A. (2020). Quantity of Airborne Microorganisms in Public Transport of Moscow in Winter Period. Urban Studies and Practices, 3(3), 36-47. https://doi.org/10.17323/usp33201836-47
Section
Articles