Устойчивость искусственного интеллекта: взгляд урбаниста сквозь призму концепции умного и устойчивого города*

* Статья содержит упоминание запрещенных в Российской Федерации социальных сетей. Номер был подготовлен до решения суда о запрете деятельности указанных социальных сетей. Упоминание осуществляется исключительно в научных целях и не нацелено на одобрение экстремисткой деятельности

Ключевые слова: искусственный интеллект (ИИ), город с искусственным интеллектом, изменение климата, глобальные проблемы, умный и устойчивый город, умный город, технологические проблемы, городская политика, устойчивый урбанизм, городской искусственный интеллект

Аннотация

Во всем мире быстро растет популярность искусственного интеллекта (ИИ) и его применение, под которым подразумевается технология, имитирующая поведение, обычно ассоциируемое с человеческим интеллектом. Сегодня системы на основе ИИ используются в самых разных областях — от маркетинга до банковского дела и финансов, от сельского хозяйства до здравоохранения и безопасности, от исследований космоса до робототехники и транспорта, от чат-ботов до машиностроения и машинного творчества. В последнее время системы на основе ИИ также начинают становиться неотъемлемой частью многих городских служб. Городской искусственный интеллект управляет транспортными системами городов, ресторанами и магазинами, где на повседневном уровне разворачивается городская жизнь, ремонтирует городскую инфраструктуру и управляет сферами городского хозяйства, такими как дорожное движение, мониторинг качества воздуха, вывоз мусора и энергетика. Ожидается, что в наступившую эпоху неопределенности и сложности все более широкое внедрение ИИ продолжится, а значит, будет расти и его влияние на устойчивость развития наших городов. В данной работе устойчивость ИИ критически исследуется и проблематизируется в контексте умных и устойчивых городов. Авторы предлагают ряд соображений касательно появившихся недавно городских искусственных интеллектов и потенциального симбиоза между ИИ и умным и устойчивым урбанизмом. С точки зрения методологии статья представляет собой обзор текущего состояния литературы, исследований, разработок, тенденций и приложений, связанных с ИИ и умным и устойчивым городом. Таким образом, она является вкладом в актуальные академические дискуссии вокруг умных и устойчивых городов и ИИ. Кроме того, проливая свет на распространение ИИ в городах, данная статья призвана помочь городским политикам, градостроителям и гражданам принимать информированные решения о внедрении ИИ, ориентированного на устойчивое развитие.

Скачивания

Данные скачивания пока не доступны.

Биографии авторов

Тан Иджитканлар, Технологический университет Квинсленда

Профессор городских исследований и градостроительства, Школа архитектуры и городской среды, Технологический университет Квинсленда

Федерико Кугурульо, Дублинский университет

Доцент умного и устойчивого градостроительства, факультет географии, Школа естественных наук, Тринити-колледж, Дублинский университет

Литература

Агравал А., Ганс Дж., Голдфарб А. (2019) Искусственный интеллект на службе бизнеса. Как машинное прогнозирование помогает принимать решения. М.: Манн, Иванов и Фербер.

Бостром Н. (2016) Искусственный интеллект. Этапы. Угрозы. Стратегии. М.: Манн, Иванов и Фербер.

Гринфилд А. (2018) Радикальные технологии: устройство повседневной жизни. М.: Издательский дом «Дело» РАНХиГС.

Лавлок Дж. (2022) Новацен: грядущая эпоха сверхразума. СПб.: Издательство Европейского университета.

О’Нил К. (2018) Убийственные большие данные. Как математика превратилась в оружие массового поражения. М.: АСТ.

Рассел С., Норвиг П. (2021) Искусственный интеллект: современный подход. М.: Диалектика.

Тегмарк М. (2019) Жизнь 3.0. Быть человеком в эпоху искусственного интеллекта. М.: АСТ.

Accord C. (2017) Trump decision on climate change ‘major disappointment’: United Nations // Waste Water Manag. Aust. Vol. 44. P. 35.

Acheampong R. A., Cugurullo F. (2019) Capturing the behavioural determinants behind the adoption of autonomous vehicles: Conceptual frameworks and measurement models to predict public transport, sharing and ownership trends of self-driving cars. Transp. Res. Part. F. Vol. 62. P. 349–375.

Adly A. S., Adly A. S., Adly M. S. (2020) Approaches based on artificial intelligence and the internet of intelligent things to prevent the spread of COVID-19: Scoping review // J. Med. Internet Res. Vol. 22. P. e19104.

Agrawal A., Gans J., Goldfarb A. (2018) Prediction Machines: The Simple Economics of Artificial Intelligence. Boston, MA: Harvard Business Press.

Ahmad M. A., Teredesai A., Eckert C. (2020) Fairness, accountability, transparency in AI at scale: Lessons from national programs // Proceedings of the 2020 Conference on Fairness, Accountability, and Transparency, Barcelona, Spain, 27–30 January 2020. P. 690–699.

Allam Z., Dhunny Z. A. (2019) On big data, artificial intelligence and smart cities. Cities // Vol. 89. P. 80–91.

Allam Z., Newman P. (2018) Redefining the smart city: Culture, metabolism and governance // Smart Cities. Vol. 1. P. 4–25.

Allen B., Agarwal S., Kalpathy-Cramer J., Dreyer K. (2019) Democratizing AI // J. Am. Coll. Radiol. Vol. 16. P. 961–963.

AlOmar M. K., Hameed M. M., AlSaadi M. A. (2020) Multi hours ahead prediction of surface ozone gas concentration: Robust artificial intelligence approach // Atmos. Pollut. Res. Vol. 11. P. 1572–1587.

Angelidou M. (2015) Smart cities: A conjuncture of four forces // Cities. Vol. 47. P. 95–106.

Anguelovski I., Irazábal-Zurita C., Connolly J. J. (2019) Grabbed urban landscapes: Socio-spatial tensions in green infrastructure planning in Medellín // Int. J. Urban. Reg. Res. Vol. 43. P. 133–156.

Arbolino R., De Simone L., Carlucci F., Yigitcanlar T., Ioppolo, G. (2018) Towards a sustainable industrial ecology: Implementation of a novel approach in the performance evaluation of Italian regions. J. Clean. Prod. Vol. 178. P. 220–236.

Arrieta A. B., Díaz-Rodríguez N., Del Ser J., Bennetot A., Tabik S., Barbado A., Chatila R. (2020) Explainable artificial intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward responsible AI // Inf. Fusion. Vol. 58. P. 82–115.

Atapattu S. (2020) Climate change and displacement: Protecting ‘climate refugees’ within a framework of justice and human rights. J. Hum. Rights Environ // Vol. 11. P. 86–113.

Awad E., Dsouza S., Kim R., Schulz J., Henrich J., Shariff A., Bonnefon J., Rahwan I. (2018) The moral machine experiment // Nature. No. 563. P. 59–64.

Awad E., Dsouza S., Shariff A., Rahwan I., Bonnefon J. F. (2020) Universals and variations in moral decisions made in 42 countries by 70,000 participants // Proc. Natl. Acad. Sci. USA. No. 117. P. 2332–2337.

Aziz K., Haque M. M., Rahman A., Shamseldin A. Y., Shoaib M. (2017) Flood estimation in ungauged catchments: Application of artificial intelligence-based methods for Eastern Australia // Stoch. Environ. Res. Risk Assess. Vol. 31. P. 1499–1514.

Bach J. (2020) When artificial intelligence becomes general enough to understand itself. Commentary on Pei Wang’s paper “on defining artificial intelligence” // J. Artif. Gen. Intell. Vol. 11. P. 15–18.

Barnes E. A., Hurrell J. W., Ebert-Uphoff I., Anderson, C., Anderson D. (2019) Viewing forced climate patterns through an AI Lens // Geophys. Res. Lett. Vol. 46. P. 13389–13398.

Barns S. (2019) Platform Urbanism: Negotiating Platform Ecosystems in Connected Cities. Singapore: Palgrave Macmillan.

Bastos M., Mercea D. (2018) The public accountability of social platforms: Lessons from a study on bots and trolls in the Brexit campaign // Philos. Trans. R. Soc. A. Vol. 376 (2118).

Batty M. (2018) Inventing Future Cities. Cambridge, MA: MIT Press.

Berchin I. I., Valduga I. B., Garcia J., de Andrade J. B. (2020) Climate change and forced migrations: An effort towards recognizing climate refugees // Geoforum. Vol. 84. P. 147–150.

Berck P., Levy A., Chowdhury K. (2012) An analysis of the world’s environment and population dynamics with varying carrying capacity, concerns and skepticism // Ecol. Econ. Vol. 73. P. 103–112.

Boenig-Liptsin M. (2017) AI and robotics for the city: Imagining and transforming social infrastructure in San Francisco, Yokohama, and Lviv // Field Actions Sci. Rep. Vol. 17. P. 16–21.

Bostrom N. (2017) Superintelligence. Oxford: Oxford University Press.

Bottarelli L., Bicego M., Blum J., Farinelli A. (2019) Orienteering-based informative path planning for environmental monitoring // Eng. Appl. Artif. Intell. Vol. 77. P. 46–58.

Brandtzaeg P. B., Følstad, A. (2018) Chatbots: Changing user needs and motivations // Interactions. Vol. 25. P. 38–43.

Brevini B. (2020) Black boxes. Not green: Mythologizing artificial intelligence and omitting the environment // Big Data Soc. Vol. 7. P. 2053951720935141.

Brock J. K., Von Wangenheim F. (2019) Demystifying AI: What digital transformation leaders can teach you about realistic artificial intelligence // Calif. Manag. Rev. Vol. 61. P. 110–134.

Bundy A. (2017) Preparing for the future of artificial intelligence // Ai Soc. Vol. 32. P. 285–287.

Burton S., Habli I., Lawton T., McDermid J., Morgan P., Porter Z. (2020) Mind the gaps: Assuring the safety of autonomous systems from an engineering, ethical, and legal perspective // Artif. Intell. Vol. 279. P. 103201.

Butler L., Yigitcanlar T., Paz A. (2020) How can smart mobility innovations alleviate transportation disadvantage? Assembling a conceptual framework through a systematic review // Appl. Sci. Vol. 10. P. 6306.

Caprotti F., Liu D. (2020) Emerging platform urbanism in China: Reconfigurations of data, citizenship and materialities // Technol. Forecast. Soc. Chang. Vol. 151. P. 119690.

Cath C., Wachter S., Mittelstadt B., Taddeo M., Floridi L. (2018) Artificial intelligence and the ‘good society’: The US, EU, and UK approach // Sci. Eng. Ethics. Vol. 24. P. 505–528.

Chatterjee S., Bhattacharjee K. K. (2020) Adoption of artificial intelligence in higher education: A quantitative analysis using structural equation modelling // Educ. Inf. Technol. Vol. 11. No. 6. P. 5467.

Chaurasia V. K., Yunus A., Singh M. (2020) An overview of smart city: Observation, technologies, challenges and blockchain applications. Blockchain Technology for Smart Cities. Singapore: Springer. P. 133–154.

Chen G., Li X., Liu X., Chen Y., Liang X., Leng J., Huang K. (2020) Global projections of future urban land expansion under shared socioeconomic pathways // Nat. Commun. Vol. 11. P. 1–12.

Chen S. Y., Kuo H. Y., Lee C. (2020) Preparing society for automated vehicles: Perceptions of the importance and urgency of emerging issues of governance, regulations, and wider impacts // Sustainability. Vol. 12. P. 7844.

Chu E. K. (2016) The governance of climate change adaptation through urban policy experiments // Environ. Policy Gov. Vol. 26. P. 439–451.

Clifton J., Glasmeier A., Gray M. (2020) When machines think for us: The consequences for work and place // Camb. J. Reg. Econ. Soc. Vol. 13. P. 3–23.

Coaffee J., Therrien M. C., Chelleri L., Henstra D., Aldrich D. P., Mitchell C. L. (2018) Urban resilience implementation: A policy challenge and research agenda for the 21st century // J. Contingencies Crisis Manag. Vol. 26. P. 403–410.

Cohen J. E. (2003) Human population: The next half century // Science. Vol. 302. P. 1172–1175.

Coletta C., Evans L., Heaphy L., Kitchin R. (2019) Creating Smart Cities. London: Routledge.

Corea F. (2018) AI Knowledge Map: How to Classify AI Technologies. Режим доступа: https://www.forbes.com/sites/cognitiveworld/(2018)/08/22/ai-knowledge-map-how-to-classify-aitechnologies/#5e99db627773 (дата обращения: 11.05.2020).

Cugurullo F. (2018) The origin of the smart city imaginary: From the dawn of modernity to the eclipse of reason. The Routledge Companion to Urban Imaginaries. London: Routledge. P. 113–124.

Cugurullo F. (2013) How to build a sandcastle: An analysis of the genesis and development of Masdar City // J. Urban. Technol. Vol. 20. P. 23–37.

Cugurullo F. (2016) Speed kills: Fast urbanism and endangered sustainability in the Masdar City project. Datta A., Shaban A. (Eds.) Mega-Urbanization in the Global South: Fast Cities and New Urban Utopias of the Postcolonial State. London: Routledge. P. 78–92.

Cugurullo F. (2016) Urban eco-modernisation and the policy context of new eco-city projects: Where Masdar City fails and why // Urban. Stud. Vol. 53. P. 2417–2433.

Cugurullo F. (2018) Exposing smart cities and eco-cities: Frankenstein urbanism and the sustainability challenges of the experimental city // Environ. Plan. A. Vol. 50. P. 73–92.

Cugurullo F. (2020) Urban artificial intelligence: From automation to autonomy in the smart city // Front. Sustain. Cities. Vol. 2. P. 38.

Cugurullo F., Acheampong R. A., Gueriau M., Dusparic I. (2020) The transition to autonomous cars, the redesign of cities and the future of urban sustainability // Urban. Geogr.

Cuzzolin F., Morelli A., Cîrstea, B., Sahakian, B. J. (2020) Knowing me, knowing you: Theory of mind in AI // Psychol. Med. Vol. 50. P. 1057–1061.

Dauvergne P. (2020) Is artificial intelligence greening global supply chains? Exposing the political economy of environmental costs // Rev. Int. Political Econ.

Dauvergne P. (2021) The globalization of artificial intelligence: Consequences for the politics of environmentalism // Globalizations. Vol. 18. P. 285–299.

Desouza K. (2017) Governing in the Age of the Artificially Intelligent City. 2017. Режим доступа: [https://www.governing.com/commentary/col-governing-age-artificially-intelligent-city.html](https://www.governing.com/commentary/col-governing-age-artificially-intelligent-city.html) (дата обращения: 15.09.2020).

Desouza K., Hunter M., Jacop B., Yigitcanlar T. (2020) Pathways to the making of prosperous smart cities: An exploratory study on the best practice // J. Urban. Technol. Vol. 27. No. 3. P. 3–32.

Dignam A. (2020) Artificial intelligence, tech corporate governance and the public interest regulatory response // Camb. J. Reg. Econ. Soc. Vol. 13. P. 37–54.

Donald M. (2019) Leading and Managing Change in the Age of Disruption and Artificial Intelligence. London: Emerald Group Publishing.

Dwivedi Y. et al. (2019) Artificial intelligence (AI): Multidisciplinary perspectives on emerging challenges, opportunities, and agenda for research, practice and policy // Int. J. Inf. Manag. Vol. 57. P. 101994.

El Morr C., Ali-Hassan H. (2019) Descriptive, predictive, and prescriptive analytics // Analytics in Healthcare. Cham: Springer. P. 31–55.

Elmqvist T., Andersson E., Frantzeskaki N., McPhearson T., Olsson P., Gaffney O., Takeuchi K., Folke C. (2019) Sustainability and resilience for transformation in the urban century // Nat. Sustain. Vol. 2. P. 267–273.

Engin Z., Treleaven P. (2019) Algorithmic government: Automating public services and supporting civil servants in using data science technologies // Comput. J. Vol. 62. P. 448–460.

Erskine M. (2019) Artificial intelligence, the emerging needs for human factors engineering, risk management and stakeholder engagement // Proceedings of the World Engineers Convention, Engineers Australia, Melbourne, Australia, 20–22 November 2019. P. 9–10.

Evangelista R., Bruno F. (2019) WhatsApp and political instability in Brazil: Targeted messages and political radicalization // Internet Policy Rev. Vol. 8. P. 1–23.

Evans J., Karvonen A., Luque-Ayala A., Martin C., McCormick K., Raven R., Palgan Y. V. (2019) Smart and sustainable cities? Pipe dreams, practicalities and possibilities // Local Environ. Vol. 24. P. 557–564.

Faisal A., Yigitcanlar T., Kamruzzaman M., Currie G. (2019) Understanding autonomous vehicles: A systematic literature review on capability, impact, planning and policy // J. Transp. Land Use. Vol. 12. P. 45–72.

Faisal A., Yigitcanlar T., Kamruzzaman M., Paz A. (2020) Mapping two decades of autonomous vehicle research: A systematic scientometric analysis // J. Urban. Technol. Vol. 28. Iss. 3–4. P. 45–74.

Floridi L. (2019) Establishing the rules for building trustworthy AI // Nat. Mach. Intell. Vol. 1. P. 261–262.

Floridi L., Cowls J., Kin T. C., Taddeo M. (2020) How to design AI for social good: Seven Essential factors // Sci. Eng. Ethics. Vol. 26. P. 1771–1796.

Furman J., Seamans R. (2019) AI and the economy // Innov. Policy Econ. Vol. 19. P. 161–191.

Girasa R. (2020) AI as a disruptive technology // Artificial Intelligence as a Disruptive Technology. Cham: Palgrave Macmillan. P. 3–21.

Golbabaei F., Yigitcanlar T., Bunker J. (2020) Shared autonomous vehicles in the context of smart urban mobility: A systematic review of the literature // Int. J. Sustain. Transp. Vol. 15. No. 10. P. 731–748.

Gonzalez-Jimenez H. (2018) Taking the fiction out of science fiction: (Self-aware) robots and what they mean for society, retailers and marketers // Futures. Vol. 98. P. 49–56.

Gould-Wartofsky M. A. (2015) The Occupiers: The Making of the 99 Percent Movement. London: Oxford University Press.

Granata F., Gargano R., de Marinis G. (2020) Artificial intelligence-based approaches to evaluate actual evapotranspiration in wetlands // Sci. Total Environ. Vol. 703. P. 135653.

Grigoryev L. M. (2020) Global social drama of pandemic and recession // Popul. Econ. Vol. 4. P. 18–25.

Guériau M., Cugurullo F., Acheampong R., Dusparic I. (2020) Shared autonomous mobility-on-demand: Learning-based approach and its performance in the presence of traffic congestion // IEEE Intell. Transp. Syst. Mag. No. 12 (4).

Guess A., Nagler J., Tucker J. (2019) Less than you think: Prevalence and predictors of fake news dissemination on Facebook* // Sci. Adv. Vol. 5, eaau4586.

Gurzadyan G. A. (1996) Theory of Interplanetary Flights. New York: CRC Press.

Haarstad H., Wathne M. W. (2019) Are smart city projects catalyzing urban energy sustainability? // Energy Policy. Vol. 129. P. 918–925.

Hagendorff T. (2020) The ethics of AI ethics: An evaluation of guidelines // Minds Mach. Vol. 30. P. 1–22.

Hassani H., Silva E. S., Unger S., Taj Mazinani M., MacFeely S. (2020) Artificial intelligence (AI) or intelligence augmentation (IA): What is the future? // Artif. Intell. Vol. 1. P. 143–155.

Hawkins J., Nurul Habib K. (2019) Integrated models of land use and transportation for the autonomous vehicle revolution // Transp. Rev. Vol. 39. P. 66–83.

Hodson M., Marvin S. (2010) Urbanism in the anthropocene: Ecological urbanism or premium ecological enclaves? // City. Vol. 14. P. 298–313.

Hoffmann A. L. (2019) Where fairness fails: Data, algorithms, and the limits of anti-discrimination discourse // Inf. Commun. Soc. Vol. 22. P. 900–915.

Huntingford C., Jeffers E. S., Bonsall M. B., Christensen H. M., Lees T., Yang H. (2019) Machine learning and artificial intelligence to aid climate change research and preparedness // Environ. Res. Lett. Vol. 14. P. 124007.

Imrie R., Street E. (2009) Regulating design: The practices of architecture, governance and control // Urban. Stud. Vol. 46. P. 2507–2518.

Isaak J., Hanna M. J. (2018) User data privacy: Facebook*, Cambridge Analytica, and privacy protection. Computer // Vol. 51. P. 56–59.

ITU News. (2020) Introducing ‘AI Commons’: A Framework for Collaboration to Achieve Global Impact. Режим доступа: [https://news.itu.int/introducing-ai-commons](https://news.itu.int/introducing-ai-commons) (дата обращения: 20.09.2020).

Jahani A., Rayegani B. (2020) Forest landscape visual quality evaluation using artificial intelligence techniques as a decision support system // Stoch. Environ. Res. Risk Assess. No. 34 (10). P. 1473–1486.

Jaihar J., Lingayat N., Vijaybhai P. S., Venkatesh G., Upla K. P. (2020) Smart home automation using machine learning algorithms // Proceedings of the 2020 International Conference for Emerging Technology, Belgaum, India, 5–7 June 2020. P. 1–4.

James P. (2014) Urban Sustainability in Theory and Practice: Circles of Sustainability. London: Routledge.

Jarrahi M. H. (2018) Artificial intelligence and the future of work: Human-AI symbiosis in organizational decision making // Bus. Horiz. Vol. 61. P. 577–586.

Jha S. K., Bilalovic J., Jha A., Patel N., Zhang H. (2017) Renewable energy: Present research and future scope of Artificial Intelligence // Renew. Sustain. Energy Rev. Vol. 77. P. 297–317.

Ji L., Wang Z., Chen M., Fan S., Wang Y., Shen Z. (2019) How much can AI techniques improve surface air temperature forecast? A report from AI Challenger 2018 Global Weather Forecast Contest // J. Meteorol. Res. Vol. 33. P. 989–992.

Jobin A., Ienca M., Vayena E. (2019) The global landscape of AI ethics guidelines // Nat. Mach. Intell. Vol. 1. P. 389–399.

Jury W. A., Vaux H. (2005) The role of science in solving the world’s emerging water problems // Proc. Natl. Acad. Sci. USA. Vol. 102. P. 15715–15720.

Kaika M. (2017) Don’t call me resilient again! The new urban agenda as immunology or what happens when communities refuse to be vaccinated with ‘smart cities’ and indicators // Environ. Urban. Vol. 29. P. 89–102.

Kak S. C. (1996) Can we define levels of artificial intelligence? // J. Intell. Syst. Vol. 6. P. 133–144.

Kaker S. A., Evans J., Cugurullo F., Cook M., Petrova S. (2020) Expanding cities: Living, planning and governing uncertainty. The Politics of Uncertainty. Routledge: London. P. 85–98.

Kaplan A., Haenlein M. (2019) Siri, Siri, in my hand: Who’s the fairest in the land? On the interpretations, illustrations, and implications of artificial intelligence // Bus. Horiz. Vol. 62. P. 15–25.

Karvonen A., Cugurullo F., Caprotti F. (2018) Inside Smart Cities: Place, Politics and Urban Innovation. London: Routledge.

Kassens-Noor E., Hintze A. (2020) Cities of the future? The potential impact of artificial intelligence // Artif. Intell. Vol. 1. P. 192–197.

Kerasidou A. (2020) Artificial intelligence and the ongoing need for empathy, compassion and trust in healthcare // Bull. World Health Organ. Vol. 98. P. 245.

Kirsch D. (2020) Autopilot and algorithms: Accidents, errors, and the current need for human oversight // J. Clin. Sleep Med. No. 16 (10). P. 1651–1652.

Konikow L. F., Kendy E. (2005) Groundwater depletion: A global problem // Hydrogeol. J. Vol. 13. P. 317–320.

Kontokosta C. E. (2018) Urban informatics in the science and practice of planning // J. Plan. Educ. Res. Vol. 41. No. 4. P. 382–395.

Korinek A., Stiglitz J. E. (2017) Artificial intelligence and its implications for income distribution and unemployment // Natl. Bur. Econ. Res. Vol. w24174.

Lakshmi V., Bahli B. (2020) Understanding the robotization landscape transformation: A centering resonance analysis // J. Innov. Knowl. Vol. 5. P. 59–67.

Larsson S., Heintz F. (2020) Transparency in artificial intelligence // Internet Policy Rev. Vol. 9. P. 1–12.

Leitheiser S., Follmann A. (2020) The social innovation–(re)politicisation nexus: Unlocking the political in actually existing smart city campaigns? The case of Smart City Cologne, Germany // Urban. Stud. Vol. 57. P. 894–915.

Li B. H., Hou B. C., Yu W. T., Lu X. B., Yang C. W. (2017) Applications of artificial intelligence in intelligent manufacturing: A review // Front. Inf. Technol. Electron. Eng. Vol. 18. P. 86–96.

Loi D., Wolf C. T., Blomberg J. L., Arar R., Brereton M. (2019) Co-designing AI futures: Integrating AI ethics, social computing, and design // Proceedings of the 2019 on Designing Interactive Systems Conference, San Diego, CA, USA, 23–28 June 2019. P. 381–384.

Lu H., Li H., Liu T., Fan Y., Yuan Y., Xie M., Qian X. (2019) Simulating heavy metal concentrations in an aquatic environment using artificial intelligence models and physico-chemical indexes // Sci. Total Environ. Vol. 694. P. 133591.

Lu H., Li Y., Chen M., Kim H., Serikawa S. (2018) Brain intelligence: Go beyond artificial intelligence // Mob. Netw. Appl. Vol. 23. P. 368–375.

Lu J., Feng L., Yang J., Hassan M. M., Alelaiwi A., Humar I. (2019a) Artificial agent: The fusion of artificial intelligence and a mobile agent for energy-efficient traffic control in wireless sensor networks // Future Gener. Comput. Syst. Vol. 95. P. 45–51.

Machado J. C., Ribeiro D. M., da Silva P. R., Bazanini R. (2018) Do Brazilian cities want to become smart or sustainable? // J. Clean. Prod. Vol. 199. P. 214–221.

Macrorie R., Marvin S., While A. (2020) Robotics and automation in the city: A research agenda // Urban. Geogr. No. 42 (2). P. 197–217.

Mahbub P., Goonetilleke A., Ayoko G. A., Egodawatta P., Yigitcanlar T. (2011) Analysis of build-up of heavy metals and volatile organics on urban roads in Gold Coast, Australia // Water Sci. Technol. Vol. 63. P. 2077–2085.

Makridakis S. (2017) The forthcoming artificial intelligence (AI) revolution: Its impact on society and firms // Futures. Vol. 90. P. 46–60.

Martin C. J., Evans J., Karvonen A. (2018) Smart and sustainable? Five tensions in the visions and practices of the smart-sustainable city in Europe and North America // Technol. Forecast. Soc. Chang. Vol. 133. P. 269–278.

Martínez-Santos P., Renard P. (2020) Mapping groundwater potential through an ensemble of big data methods // Groundwater. Vol. 58. P. 583–597.

Masanja N., Mkumbo H. (2020) The application of open source artificial intelligence as an approach to frugal innovation in Tanzania // Int. J. Res. Innov. Appl. Sci. Vol. 5. P. 36–46.

Matthias A. (2004) The responsibility gap: Ascribing responsibility for the actions of learning automata // Ethics Inf. Technol. Vol. 6. P. 175–183.

Mende M., Scott M. L., van Doorn J., Grewal D., Shanks I. (2019) Service robots rising: How humanoid robots influences service experiences and elicit compensatory consumer responses // J. Mark. Res. Vol. 56. P. 535–556.

Metaxiotis K., Carrillo J., Yigitcanlar T. (2010) Knowledge-Based Development for Cities and Societies: Integrated Multi-Level Approaches. Hersey: IGI Global.

Mikhaylov S. J., Esteve M., Campion A. (2018) Artificial intelligence for the public sector: Opportunities and challenges of cross-sector collaboration // Philos. Trans. R. Soc. A Vol. 376. P. 20170357.

Milakis D., Van Arem B., Van Wee B. (2017) Policy and society related implications of automated driving: A review of literature and directions for future research // J. Intell. Transp. Syst. Vol. 21. P. 324–348.

Mittelstadt B. (2019) Principles alone cannot guarantee ethical AI // Nat. Mach. Intell. Vol. 1. P. 501–507.

Mohamed E. (2020) The relation of artificial intelligence within internet of things: A survey // J. Cybersecur. Inf. Manag. Vol. 1. P. 30–34.

Moreau E., Vogel C., Barry M. (2019) A paradigm for democratizing artificial intelligence research // Innovations in Big Data Mining and Embedded Knowledge. Cham: Springer. P. 137–166.

Mortoja M., Yigitcanlar T. (2020) Local drivers of anthropogenic climate change: Quantifying the impact through a remote sensing approach in Brisbane // Remote Sens. Vol. 12. P. 2270

Mortoja M. G., Yigitcanlar T., Mayere S. (2020) What is the most suitable methodological approach to demarcate peri-urban areas? A systematic review of the literature // Land Use Policy. Vol. 95. P. 104601.

Musikanski L., Rakova B., Bradbury J., Phillips R., Manson M. (2020) Artificial intelligence and community well-being: A proposal for an emerging area of research // Int. J. Community Well-Being. Vol. 3. P. 39–55.

Narayanan S., Chaniotakis E., Antoniou C. (2020) Shared autonomous vehicle services: A comprehensive review // Transp. Res. Part. C. Vol. 111. P. 255–293.

Nikitas A., Michalakopoulou K., Njoya E. T., Karampatzakis D. (2020) Artificial intelligence, transport and the smart city: Definitions and dimensions of a new mobility era // Sustainability. Vol. 12. P. 2789.

Noble S. U. (2018) Algorithms of Oppression: How Search Engines Reinforce Racism. New York: New York University Press.

Noori N., de Jong M., Janssen M., Schraven D., Hoppe T. (2020) Input-output modeling for smart city development // J. Urban. Technol. Vol. 28. No. 1–2. P. 71–92.

Perng S. Y., Kitchin R., MacDonncha D. (2018) Hackathons, entrepreneurial life and the making of smart cities // Geoforum. Vol. 97. P. 189–197.

Pham B. T., Le L. M., Le T. T., Bui K. T., Le V. M., Ly H. B., Prakash I. (2020) Development of advanced artificial intelligence models for daily rainfall prediction // Atmos. Res. Vol. 237. P. 104845.

Praharaj S., Han J. H., Hawken S. (2018) Urban innovation through policy integration: Critical perspectives from 100 smart cities mission in India // City Cult. Soc. Vol. 12. P. 35–43.

Prior T., Giurco D., Mudd G., Mason L., Behrisch J. (2012) Resource depletion, peak minerals and the implications for sustainable resource management // Glob. Environ. Chang. Vol. 22. P. 577–587.

Probst W. N. (2020) How emerging data technologies can increase trust and transparency in fisheries // J. Mar. Sci., 77. P. 1286–1294.

Pueyo S. (2018) Growth, degrowth, and the challenge of artificial superintelligence // J. Clean. Prod. Vol. 197. P. 1731–1736.

Quan S. J., Park J., Economou A., Lee S. (2019) Artificial intelligence-aided design: Smart design for sustainable city development // Environ. Plan. B. Vol. 46. P. 1581–1599.

Ragnedda M. (2017) The Third Digital Divide: A Weberian Approach to Digital Inequalities. New York: Taylor & Francis.

Rapley J. (2004) Globalization and Inequality: Neoliberalism’s Downward Spiral. London: Lynne Rienner Publishers.

Rasul G. (2014) Food, water, and energy security in South Asia: A nexus perspective from the Hindu Kush Himalayan region // Environ. Sci. Policy. Vol. 39. P. 35–48.

Raza M., Awais M., Ali K., Aslam N., Paranthaman V. V., Imran M., Ali F. (2020) Establishing effective communications in disaster affected areas and artificial intelligence-based detection using social media platform // Future Gener. Comput. Syst. Vol. 112. P. 1057–1069.

Reed C. (2018) How should we regulate artificial intelligence? // Philos. Trans. R. Soc. A. Vol. 376. No. 2128. P. 20170360.

Regilme S. S. Jr. (2019) The decline of American power and Donald Trump: Reflections on human rights, neoliberalism, and the world order // Geoforum. Vol. 102. P. 157–166.

Riddlesden D., Singleton A. D. (2014) Broadband speed equity: A new digital divide? // Appl. Geogr. Vol. 52. P. 25–33.

Robertson M. (2017) Sustainability Principles and Practice. London: Routledge.

Robinson L., Cotten S. R., Ono H., Quan-Haase A., Mesch G., Chen W., Stern M. J. (2015) Digital inequalities and why they matter // Inf. Commun. Soc. Vol. 18. P. 569–582.

Rothstein B. (2013) Corruption and social trust: Why the fish rots from the head down // Soc. Res. Vol. 80. P. 1009–1032.

Rottz M., Sell D., Pacheco R., Yigitcanlar T. (2019) Digital commons and citizen coproduction in smart cities: Assessment of Brazilian municipal e-government platforms // Energies. Vol. 12. P. 2813.

Santangeli A., Chen Y., Kluen E., Chirumamilla R., Tiainen J., Loehr J. (2020) Integrating drone-borne thermal imaging with artificial intelligence to locate bird nests on agricultural land // Sci. Rep. Vol. 10. P. 1–8.

Schalkoff R. J. (1990) Artificial Intelligence: An Engineering Approach. New York: McGraw-Hill.

Schellin H., Oberley T., Patterson K., Kim B., Haring K. S., Tossell C. C., de Visser E. J. (2020) Man’s new best friend? Strengthening human-robot dog bonding by enhancing the dog likeness of Sony’s Aibo // Proceedings of the 2020 Systems and Information Engineering Design Symposium, Charlottesville, VA, USA, 24 April 2020. P. 1–6.

Scherer M. U. (2015) Regulating artificial intelligence systems: Risks, challenges, competencies, and strategies // Harv. J. Law Technol. Vol. 29. P. 353.

Schürholz D., Kubler S., Zaslavsky A. (2020) Artificial intelligence-enabled context-aware air quality prediction for smart cities // J. Clean. Prod. Vol. 271. P. 121941.

Shelton T., Zook M., Wiig A. (2015) The ‘actually existing smart city’ // Camb. J. Reg. Econ. Soc. Vol. 8. P. 13–25.

Shneiderman B. (2020) Human-centered artificial intelligence: Reliable, safe & trustworthy // Int. J. Hum. Comput. Interact. Vol. 36. P. 495–504.

Singh T. P., Nandimath P., Kumbhar V., Das S., Barne P. (2020) Drought risk assessment and prediction using artificial intelligence over the southern Maharashtra state of India // Modeling Earth Syst. Environ. Vol. 7. No. 9. P. 1–9.

Smith T. R. (1984) Artificial intelligence and its applicability to geographical problem solving // Prof. Geogr. Vol. 36. P. 147–158.

Sohn K., Kwon O. (2020) Technology acceptance theories and factors influencing artificial intelligence-based intelligent products // Telemat. Inform. Vol. 47. P. 101324.

Sotto D., Philippi A., Yigitcanlar T., Kamruzzaman M. (2019) Aligning urban policy with climate action in the global south: Are Brazilian cities considering climate emergency in local planning practice? // Energies. Vol. 12. P. 3418.

Sousa W. G., de Melo E. R., Bermejo P. H., Farias R. A., Gomes A. O. (2019) How and where is artificial intelligence in the public sector going? A literature review and research agenda // Gov. Inf. Q. Vol. 36. P. 101392.

Stilgoe J. (2019) Who’s Driving Innovation? New Technologies and the Collaborative State. Berlin: Springer Nature.

Sun W., Bocchini P., Davison B. D. (2020) Applications of artificial intelligence for disaster management // Nat. Hazards. Vol. 103. No. 3. P. 2631–2689.

Suwa S., Tsujimura M., Kodate N., Donnelly S., Kitinoja H., Hallila J., Ishimaru M. (2020) Exploring perceptions toward home-care robots for older people in Finland, Ireland, and Japan: A comparative questionnaire study // Arch. Gerontol. Geriatr. Vol. 91. P. 104178.

Taddeo M., McCutcheon T., Floridi L. (2019) Trusting artificial intelligence in cybersecurity is a double-edged sword // Nat. Mach. Intell. Vol. 1. P. 557–560.

Taeihagh A., Lim H. S. (2019) Governing autonomous vehicles: Emerging responses for safety, liability, privacy, cybersecurity, and industry risks // Transp. Rev. Vol. 39. P. 103–128.

Taplin R. (2020) Cyber Risk, Intellectual Property Theft and Cyber warfare: Asia, Europe and the USA. London: Routledge.

Teoh E. R. (2020) What’s in a name? Drivers’ perceptions of the use of five SAE Level 2 driving automation systems // J. Saf. Res. Vol. 72. P. 145–151.

Trencher G. (2019) Towards the smart city 2.0: Empirical evidence of using smartness as a tool for tackling social challenges // Technol. Forecast. Soc. Chang. Vol. 142. P. 117–128.

Truby J., Brown R., Dahdal A. (2020) Banking on AI: Mandating a proactive approach to AI regulation in the financial sector // Law Financ. Mark. Rev. Vol. 14. P. 110–120.

Tscharntke T., Clough Y., Wanger T. C., Jackson L., Motzke I., Perfecto I., Whitbread A. (2012) Global food security, biodiversity conservation and the future of agricultural intensification // Biol. Conserv. Vol. 151. P. 53–59.

Tung T. M., Yaseen Z. M. (2020) A survey on river water quality modelling using artificial intelligence models: 2000–2020 // J. Hydrol. Vol. 585. P. 124670.

Turchin A., Denkenberger D. (2020) Classification of global catastrophic risks connected with artificial intelligence // Ai Soc. Vol. 35. P. 147–163.

Tzimas T. (2018) Artificial intelligence as global commons and the “international law supremacy” principle // Proceedings of the 10th International RAIS Conference on Social Sciences and Humanities, Princeton, NJ, USA, 22–23 August (2018). P. 83–88.

Ullah Z., Al-Turjman F., Mostarda L., Gagliardi R. (2020) Applications of artificial intelligence and machine learning in smart cities // Comput. Commun. Vol. 154. P. 313–323.

Vanolo A. (2016) Is there anybody out there? The place and role of citizens into tomorrow’s smart cities // Futures. Vol. 82. P. 26–36.

Vinuesa R., Azizpour H., Leite I., Balaam M., Dignum V., Domisch S., Nerini F. F. (2020) The role of artificial intelligence in achieving the sustainable development goals // Nat. Commun. Vol. 11. P. 233.

Voda A. I., Radu L. D. (2018) Artificial intelligence and the future of smart cities // Broad Res. Artif. Intell. Neurosci. Vol. 9. P. 110–127.

Walshe R., Casey K., Kernan J., Fitzpatrick D. (2020) AI and big data standardization: Contributing to United Nations sustainable development goals // J. Ict Stand. Vol. 8. P. 77–106.

Wang P., Yao J., Wang G., Hao F., Shrestha S., Xue B., Peng Y. (2019) Exploring the application of artificial intelligence technology for identification of water pollution characteristics and tracing the source of water quality pollutants // Sci. Total Environ. Vol. 693. P. 133440.

Wearn O. R., Freeman R., Jacoby D. M. (2019) Responsible AI for conservation // Nat. Mach. Intell. Vol. 1. P. 72–73.

Wheeler S. M. (2013) Planning for Sustainability: Creating Livable, Equitable and Ecological Communities. New York: Routledge.

Wu N., Silva E. A. (2010) Artificial intelligence solutions for urban land dynamics: A review // J. Plan. Lit. Vol. 24. P. 246–265.

Yampolskiy R. V. (2015) Artificial Superintelligence: A Futuristic Approach. New York: CRS Press.

Yigitcanlar T. (2009) Planning for smart urban ecosystems: Information technology applications for capacity building in environmental decision making // Theor. Empir. Res. Urban. Manag. Vol. 4. P. 5–21.

Yigitcanlar T. (2010a) Rethinking Sustainable Development: Urban Management, Engineering, and Design. Hersey: IGI Global.

Yigitcanlar T. (2010b) Sustainable Urban and Regional Infrastructure Development: Technologies, Applications and Management. Hersey: IGI Global.

Yigitcanlar T. (2016) Technology and the City: Systems, Applications and Implications. New York: Routledge.

Yigitcanlar T. (2018) Smart city policies revisited: Considerations for a truly smart and sustainable urbanism practice // World Technopolis Rev. Vol. 7. P. 97–112.

Yigitcanlar T., Butler L., Windle E., Desouza K., Mehmood R., Corchado J. (2020) Can building ‘artificially intelligent cities’ protect humanity from natural disasters, pandemics and other catastrophes? An urban scholar’s perspective // Sensors. Vol. 20. P. 2988.

Yigitcanlar T., Desouza K., Butler L., Roozkhosh F. (2020) Contributions and risks of artificial intelligence (AI) in building smarter cities: Insights from a systematic review of the literature. Energies // Vol. 13. P. 1473.

Yigitcanlar T., Dur F. (2013) Making space and place for knowledge communities: Lessons for Australian practice // Australas. J. Reg. Stud. Vol. 19. P. 36–63.

Yigitcanlar T., Foth M., Kamruzzaman M. (2019) Towards post-anthropocentric cities: Reconceptualising smart cities to evade urban ecocide // J. Urban. Technol. Vol. 26. P. 147–152.

Yigitcanlar T., Hoon M., Kamruzzaman M., Ioppolo G., Sabatini-Marques J. (2019) The making of smart cities: Are Songdo, Masdar, Amsterdam, San Francisco and Brisbane the best we could build? // Land Use Policy. Vol. 88. P. 104187.

Yigitcanlar T., Inkinen T. (2019) Geographies of Disruption: Place Making for Innovation in the Age of Knowledge Economy. Cham: Springer International Publishing.

Yigitcanlar T., Kamruzzaman M. (2015) Planning, development and management of sustainable cities: A commentary from the guest editors // Sustainability. Vol. 7. P. 14677–14688.

Yigitcanlar T., Kankanamge N., Vella K. (2020) How are the smart city concepts and technologies perceived and utilized? A systematic geo-twitter analysis of smart cities in Australia // J. Urban. Technol. Vol. 29. No. 1–2. P. 135–154.

Yu K. H., Beam A. L., Kohane I. S. (2018) Artificial intelligence in healthcare // Nat. Biomed. Eng. Vol. 2. P. 719–731.

Yun J., Lee D., Ahn H., Park K., Lee S., Yigitcanlar T. (2016) Not deep learning but autonomous learning of open innovation for sustainable artificial intelligence // Sustainability. Vol. 8. P. 797.

Zeadally S., Adi E., Baig Z., Khan I. A. (2020) Harnessing artificial intelligence capabilities to improve cybersecurity // IEEE Access. Vol. 8. P. 23817–23837.

Zhang J., Hua X. S., Huang J., Shen X., Chen J., Zhou Q. (2019) Citybrain: Practice of large-scale artificial intelligence in the real world // IET Smart Cities. Vol. 1. P. 28–37.

Zhuravleva N. A., Nica E., Durana P. (2019) Sustainable smart cities: Networked digital technologies, cognitive big data analytics, and information technology-driven economy // Geopolit. Hist. Int. Relat. Vol. 11. P. 41–47.

Опубликован
2022-03-29
Как цитировать
ИджитканларТ., & КугурульоФ. (2022). Устойчивость искусственного интеллекта: взгляд урбаниста сквозь призму концепции умного и устойчивого города*. Городские исследования и практики, 7(1), 35-64. https://doi.org/10.17323/usp71202235-64
Раздел
Articles